MODULATION OF STAPHYLOCOCCUS AUREUS BIOFILM BY ELECTROMAGNETIC RADIATION
نویسندگان
چکیده
Mobile communication systems are undoubtedly an environmental source of electromagnetic radiation (EMR). Although the direct health effect a cell phone to human is still elusive, unicellular organisms rather apparent. The aim this study was examine effects EMR on development bacterial biofilm. Microtitration plates with four strains Staphylococcus aureus were exposed field frequencies 1-5 GHz, which used in mobile phones. results showed mostly inhibition biofilm activity at 1, 2 and 3 however significant stimulation occurred 4 5 GHz. Our observations demonstrate that exposure produced modulation biofilms, very important commensal pathogen bacteria.
منابع مشابه
Ascorbic acid augments colony spreading by reducing biofilm formation of methicillin resistant Staphylococcus aureus
Objective(s):Staphylococcus aureus is a Gram-positive pathogen, well known for its resistance andversatile lifestyle. Under unfavourable conditions, it adapts biofilm mode of growth. For staphylococcal biofilm formation, production of extracellular polymeric substances (EPS) is a pre-requisite, which is regulated by ica operon-encoded enzymes. This study was designed to know the impact of ascor...
متن کاملModulation of Staphylococcus aureus spreading by water.
Staphylococcus aureus is known to spread rapidly and form giant colonies on the surface of soft agar and animal tissues by a process called colony spreading. So far, the mechanisms underlying spreading remain poorly understood. This study investigated the spreading phenomenon by culturing S. aureus and its mutant derivatives on Tryptic Soy Agarose (TSA) medium. We found that S. aureus extracts ...
متن کاملEvaluation of Wi-Fi Radiation Effects on Antibiotic Susceptibility, Metabolic Activity and Biofilm Formation by Escherichia Coli 0157H7, Staphylococcus Aureus and Staphylococcus Epidermis
Background: The radiation emitted from electromagnetic fields (EMF) can cause biological effects on prokaryotic and eukaryotic cells, including non-thermal effects. Objective: The present study evaluated the non-thermal effects of wireless fidelity (Wi-Fi) operating at 2.4 GHz part of non-ionizing EMF on different pathogenic bacterial strains (Escherichia coli 0157H7, Staphylococcus aureu...
متن کاملDoes biofilm formation have different pathways in Staphylococcus aureus?
Objective(s): Biofilm formation is one of the most important factors in the development of infections caused by Staphylococcus aureus. In this study, the expression levels of genes responsible for biofilm formation were studied in methicillin sensitive and methicillin resistant S. aureus.Materials and Methods: A total of 100 meticillin-r...
متن کاملBiofilm formation by Scottish clinical isolates of Staphylococcus aureus.
The biofilm-forming capacity of 972 clinical isolates of Staphylococcus aureus was tested using a high-throughput polystyrene 96-peg plate format. Isolates of S. aureus were collected from patients in hospitals throughout Scotland from 2004 to 2006; 763 of these were meticillin-resistant S. aureus (MRSA) and 209 were meticillin-sensitive S. aureus (MSSA). The biomass of each biofilm was quantif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Microbiology, Biotechnology and Food Sciences
سال: 2021
ISSN: ['1338-5178']
DOI: https://doi.org/10.15414/jmbfs.2020.9.5.1020-1022